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SUMMARY 

Internal wave reflections and transmissions are examined for the Crank-Nicolson linear finite element 
scheme applied to the linear shallow water equations in a 1D domain containing an abrupt change in nodal 
spacing. In Part I of this series the reflection/transmission analysis was verified by some ‘hot-start’ numerical 
experiments. Here in Part 11, however, that analysis is found wanting when it comes to providing a 
description of the pseudo-steady state wave configuration which develops with some ‘cold-start’ experiments. 
It is shown that the analysis of Part I can be extended to take in both the ‘hot-’ and ‘cold-start’ experimental 
results such that four essentially different wave configurations can be identified. The four configurations are 
discernible on the basis of group velocity. In order to be sustained, two of the configurations require one 
energy source whereas the other two require two energy sburces. Numerical experiments confirmed the 
analysis. 

KEY WORDS Fourier analysis Non-uniform mesh Wave reflection/transmission Group velocity 
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1. INTRODUCTION 

In Part I of this series of three papers, an analysis was made of the reflected and transmitted waves 
arising from an incident wave impinging on an abrupt change in nodal spacing. The numerical 
scheme used was the Crank-Nicolson linear finite element scheme applied to the linear shallow 
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water equations: 

au all 
-+g-=o, 
at ax 

all au 
at ax -+h-=O. 

The domain consisted of two contiguous regions which had a constant but different nodal 
spacing. Thus the only distinguishing feature between the two regions is computational rather 
than physical. The results of the analysis were surprising: it was shown that the products of the 
incident wave were two transmitted waves but no reflected waves, since the reflection coefficients 
/Il and /I2 were both zero. If the incident wave in the upstream region (i.e. region 1) had a 
dimensionless wave number y l a  = crlaAxl, then the two transmitted waves in the downstream 
region (i.e. region 2) had wave numbers yza = c r 2 a A ~ 2  and y2b = cr2bAx2 which are related by 

These results of the analysis were confirmed by ‘hot-start’ numerical experiments. In the ‘hot- 
start’ experiments, the initial conditions consisted of filling the upstream region with the incident 
wave and the downstream region with the two transmitted waves together with the appropriate 
amplitudes and phases. The somewhat unusual feature of the Crank-Nicolson FE scheme, 
compared, for example, with wave equation schemes, is that the dispersion relation is hill-shaped 
or ‘concave down’ rather than monotonically increasing. 

In this paper several ‘cold-start’ experiments were carried out and it is shown that for them the 
analysis of Part I is not the whole story. By generalizing the analysis, however, four possible wave 
configurations can be identified; of these, two correspond to the ‘hot-start’ experiments in Part I 
and another corresponds to the ‘cold-start’ experiments in the present paper. 

2. ‘COLD-START’ NUMERICAL EXPERIMENTS 

The term ‘cold-start’ is used here to describe the initial conditions throughout the downstream 
region in which the dependent variables (u and q) were set to zero. The upstream region was filled 
with incident waves as far as the interfacial node. The upstream boundary condition was 
unchanged from the ‘hot-start’ tests in which the surface elevation at the upstream end varied 
sinusoidally with time. 

In the computer runs, the desired initial conditions of having only an incident wave in region 1 
were effected by setting both the transmission coefficients (zl and z2) equal to zero. (These values 
were recorded in each window at the base of the plots.) In the hot-start tests of Part I (and also later 
in the present paper), the correctness of the analytical solution in predicting the actual numerical 
results was highlighted by plotting their differences (i.e. between the predicted and actual values) 
with small triangles at each node location. Thus a zero value at each and every node indicates a 
valid analysis. In the context of a cold-start experiment, however, with z1 and z2 set to zero in the 
analytical expressions (see equations (43) and (44) of Part I), this is obviously no longer the case. 
Nevertheless, the small triangles were found to be of great assistance in identifying the presence of 
waves other than the incident and transmitted waves. 

The cold-start experiments were not carried out for 2Ax waves, since for this wavelength the 
numerical group velocity (Cgnum = - 3,/(gh)) is negative irrespective of the Courant number. In a 
‘cold-start’ experiment this would result in the incident wave moving off in the upstream direction 
without penetrating the downstream region. 
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Table I. Data for the ‘cold-start’ numerical experiments on wave reflection and 
transmission; H’=Ax,/Ax, is the mesh size ratio and N, is the dimensionless 

wavelength 

Mesh expansion, H’=2 Mesh contraction, H = 112 

L2JAx2 = 44000 

T I  = T 2 = 0  T , = T z = o  

L , ./Ax = 4-oooO 
N,=4 L,,/Ax1=8.3617 LZ$Ax2 = 8.3617 

P I  = P z = O  P 1 = P 2 = 0  
(Figure l(a)) (Figure 3(a)) 

Lz,/Ax, = 8.0000 L,JAx, =8.0000 

T,=‘Tz=O T~ =r,=O 

(Figure 2(a)) (Figure 4(a)) 

N,=8 L,JAxl= 16.0343 Lz,/Axz = 16.0343 

A = P 2 = 0  P , = P 2 = 0  

2.1. Data used in the ‘cold-start’ numerical experiments 

The data used in the four tests are given in Table I. 

2.2. Results and conclusions of the ‘cold-start’ numerical experiments 

two most notable features of this series of experiments were: 
The graphical output from the ‘cold-start’ numerical tests is contained in Figures l ( ap (a ) .  The 

(i) In the downstream region, there appeared to be only a single transmitted wave present. 
Moreover, its wavelength pertained to the physical wave number rather than the comp- 
lementary non-physical wave number. 

(ii) In the upstream region, the incident wave had a high-wave-number component super- 
imposed on it. This high-wave-number disturbance emanated from the interface and had a 
wavelength between 2Ax1 and   AX,. Its wavelength and amplitude were the same as the 
waveform of the residuals and are easily seen in region 1 of the figures. 

Since the disturbance had wavelengths less than 3Ax1, it was associated with a negative group 
velocity but a positive phase velocity. The implication here therefore is that the picture which was 
developing in region 1 of each of these cold-start experiments was of two incident waves impinging 
on the interface! This gave rise to a single ‘physical’ transmitted wave in region 2. Hence the 
pattern of waves which developed in the ‘cold-start’ experiments consisted of two incident waves 
(apparently with complementary wave numbers) in region 1 and a single transmitted wave in 
region 2. Clearly the ‘hot-start’ analysis of Part I, which does provide a valid solution to the finite 
element equations, does not provide a correct description for the ‘cold-start’ experiments. It 
appears that there are at  least two different configurations of waves. In order to explain these 
results, the analysis for the ‘hot-start’ experiments was re-examined. 

3. GENERALIZED ANALYSIS TO INCLUDE THE ‘COLD-START’ NUMERICAL 
EXPERIMENTS 

It was noted that the ‘cold-start’ experiments were characterized by two incident waves with 
complementary wave numbers. Such a wave pattern could be achieved by superimposing two 
‘hot-start’ solutions in which the two incident wave numbers are complementary. Figure 5(a) 
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TIME- 0 OT 

~~ ~~~ 

EST COKIITIONS s OT= 0.2 IS) , CELERITY. 1-00 <M/Sl , MEAN OEPTH=1/9.81 LNI CONSISTENT HASS LINEAR ELEMENTS 
v OENOTES THE RESIOUAL = NUMERICAL SOLUTION FROM MOOEL - NUMERICAL PREOICTIOM FROH ANALYSIS 

15 REGlON I OX= r.0 ( H i  , COURANT NO =0.20, L/OX; 8.3617, REFLECTION COEFFICIENTzf 0 OOOOOEOO , 0 OOOOOEOO 1 

IS REGION * O X =  2.0 IHl  , COURANT NO.= 0. 10, L/OX= 4.0000, TRANSMISSION COEFFICIENT= ( 0 OOOOOEOO , 0 OOOOOEOO I 

[/OX= 2.5152, TRANSMISSION COEFFICIENT= I 0.00000E00 , 0 OOOOOEOO I 

iXPERIMENTS FOR WAVE REFLECTIONS OUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure l(a). Mesh expansion test with cold start. At t=O,  the only wave present is the incident wave (8.3617AxJ 

TINE= 0 DT 

T I N E E  120 OT 

TIME-2400T 

EST COWJITIONS * OT=O.2 (S1 , CELERITY= 1.00 [M/Sl , NEW OEPTH=1/9.81 (HI CONSISTENT MASS L I M A R  ELEMNTS 
9 DENOTES THE RESIOUAL = NUMERICAL SOLUTION FROH MOOEL - NUHERICAL PREOICTION FROM ANALYSIS 

15 REGION I OX= I . o  IMl , COWANT NO.=O.20, L/OX= 8.3617. RELATIVE VAVE AWLITUM, A= 0.10000E01 
L/OX= 2. 1816, RELATIVE VAVE AHPLITUOE, 6;. 0.28642E00 

RELATIVE WAVE AWLITUDE, C= 0.12864E01 
L/OX= 2.5152, RELATIVE VAVE AWLITUDE, O= 0.00000E00 

1s REGION OX= 2.0 IHl , COURANT NO.= 0. 10, L/OX= 4.0000, 

iXPERIMENTS FOR WAVE REFLECTION5 DUE TO A CHANGE I N  MESH SIZE FOR THE 5HALLOU WATER EQUATlONS 

Figure l(b). Mesh expansion test with hot start for case (ii) with D=O. Waves present are: incident waves A (8-3617AxJ 
and B (2.1816AxI), and transmitted wave C (4~oooOAx,) 
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TIME. 0 OT 

lEST CONDITIONS I 01. 0.2 (S) , CELERITY=I .OO (M/S1 , MEAN OEPTH=I/9.81 [MI CONSISTENT MASS LINEAR ELEKNTS 

v DEMlTES THE RESIDUAL I NUMERICAL SOLUTION FROM MODEL - NIJNERICAL PREDICTION FROM ANALYSIS 
HS REGION OX= I .  0 (MI , COURANT NO.= 0.20, L/OX=I 6.0343, REFLECTION COEFFICIENT= ( O.CWOOOEO0 , 0.00000E00 I 
'HS REGION I OX= 2.0 [MI , COURANT NO.=O. 10, L/OX= 8.0000, TRhNSMISSION COEFFILIENT=( 0.0000~00 , 0.00000E00 ) 

L/OX= 2. 1914, TRANSMISSION COEFFICIENT=( O.OOOO@ECW , 0.00000E00 1 

EXPERIMENTS FOR WAVE REFLECTIONS OUE TO A CHANGE IN MESH SIZE FOR THE SHALLOWWATER EQUATIONS 

Figure 2(a). Mesh expansion test with cold start. At t = O ,  the only wave present is the incident wave (16.0343Ax1) 

TIME- 0 DT 

~~ 

EST COtUlTlOHS , OT= 0.2 "3 , CELERITY. 1-00 W S f  , MEAN OEPTH=l/9.8l (H) CONSISTENT MASS LINEAR ELEHENTS 

v OEMTES THE RESIDUAL = NUMERICAL SOLUTION FROM MODEL - NUIERICAL PREDICTION FROM ANALYSIS 
HS REGION , OX; 1.0 IMI , COURANT NO.=o.20, L/OXz16.0343, RELATIVE VAVE AMPLITUDE, A= 0 IOCWOEOI 

L/OX= 2.0878, RELATIVE VAVE AHPLITUE, b 0.44093E-01 
HS REGION I DXI 2.0 It41 , COURANT NO.=O. 10, L/DX= 8.0000, RELATIVE VAVE AHPLITUE, C= 0 10441EOI 

L/OXm 2. 1914, RELATIVE VAVE AHPLITUOE, 0- 0.00CWOE00 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE IN MESH SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure 2(b). Mesh expansion test with hot start for case (ii) with D = O .  Waves present are: incident waves A (16.0343AxJ 
and B (2.0878AxI), and transmitted wave C (8~oooOAx2) 
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TIME- 0 01 
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EST CONDITIONS I 01. 0. 2 (Sl , CELERITY= I .OO (M/Sl , MEAN OEPTH=1/9.81 IN1 CONSISTENT MASS LINEAR ELEMENTS 

v OEMllES THE RESIDUAL I NUMERICAL SOLUlIoN FROM MODEL - NUFIERICAL PRFOICIION FROM ANALYSIS 
HS REGION I OXs 1.0 It41 , COURANT NO.=O.20, L/OX= 4.0000, 
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TRANSHISSION COEFFICIENT=I 0.OOOOOEW , 0.00WOE00 I 
L/OX= 2. 1816, TRANSHISSION COEFFICIENT=( 0.OOOOoEW , 0.00WOE00 I 

- ~ 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 3(a). Mesh refinement test with cold start. At t = O ,  the only wave present is the incident wave (4~oooOAx,) 

TIME- 0 OT 

TIME. 1 0 0 0 1  

.EST COWITIONS 01. 0.2 (51 , CELERITY= 1 .oo W S l  , HEAN OEPTH=119.81 [MI CONSISTENT MASS LINEAR ELEHENTS 

v OEMIES THE RESIDUAL = NUMERICAL SOLUTION FROM MODEL - NMERICAL PREOICTION FROM ANALYSIS 
H5 REGION I OX= I .o (MI , COURANT NO.=o.20, L/DX= 4.0000, 

L/OX= 2.5152, 
HS REGION I OX= 0.5 IN1 , COURANT N 0 . = 0 . 4 0 ,  L/OX= 8.3617, 

LmX- 2. 1816, 
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RELAIIVE VAVE AMPLITUDE, 8=-0.28642€00 
RELATIVE VAVE AWLITUOE, C= 0.71358E00 
RELATIVE VAVE AhPLITuoE, 0- O.OMMOEO0 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S I Z E  FOR THE SHALLOW WATER EQUATION5 

Figure 3(b). Mesh refinement test with hot start for case (ii) with D =O. Waves present are: incident waves A (4~oooOAx,) 
and B (25152Ax,), and transmitted wave C (8 .36176~~)  



INTERNAL WAVE REFLECTIONS/TRANSMISSIONS. I1 817 

TIME- 0 OT 

1 
v v v v v v v v v v v v v v v v v v v J i  

'EST CONOlTlONS I 01; 0. 2 IS1 , CELERITY= I .OO W S I  , HEAN OEPTH=II9.81 (HI CONSISTENT MASS LlNEAR ELEMENTS 
o DENOTES THE RESIDUAL I NUMERICAL SOLUIICN FROH MOOEL - NUHERICAL PREDICTION FROM ANALYSIS 

HS REGION 3 OX= I . o  IN1 , COURANT NO.=0.20, LIOX. 8.0000, REFLECTlON COEFFlClENT=l 0.00000EM) , 0.00000E00 1 

HS REGION s OX: 0.5 fM1 , COURANT NO.. 0 . 4 0 ,  L/OX=I 6.0343, TRANSMISSION COEFFICIENT= I 0.00OOoE(jo , 0.00000E00 I 

L/OX= 2.0878. TRANSMISSION COEFFICIENT= f 0.00000E00 , 0 OOOOOEOO 1 

EXPERIMENTS FOR WAVE REFLECTIONS DUE T O  A CHANGE I N  MESH SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure 4(a). Mesh refinement test with cold start. At t = O ,  the only wave present is the incident wave (8.ooOOAxJ 
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qS REGION I OX= 1.0 IMl , COURANT NO.= 0.20, L/OX= 8.0000, RELATIVE VAVE AMPLITUDE, A= 0. IOOOOEOI 
L/OX; 2 .  1914, RELATIVE WAVE AHPLITUM, B=-0.44093E-01 

HS REGION I OX= 0.5 (HI , COURANT N0.=0.40, L/OX=16.0343, RELATIVE WAVE AMPLITUDE, C= 0.95591E00 
L/OX- 2.0878, RELATIVE VAVE AHPLITUOE, 0- 0.00000E00 

EXPERIMENTS FOR UAVE REFLECTIONS OUE TO A CHANGE I N  MESH SIZE FOR THE SHALLOWUATER EQUATIONS 

Figure qb). Mesh refinement test with hot start for case (ii) with D=O. Waves presht are: incident waves A (80000Ax,) 
and B (2.1914Ax,), and transmitted wave C (16,0343Ax2) 
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/- Br; 

- 6  

-----LY Br; 

Figure 5(a). T w o  wave systems combined 

Figure S(b). Equivalent wave system 

details the combination of two incident waves and their associated transmitted waves. The 
convention (from Part I) oflabelling the wave numbers according to the region and whether or not 
it is the physical wave or its complement (i.e. ola, bib, oZa, o2b) which is being referred to will be 
modified. The new convention adopted for wave numbers refers to the region and whether the 
wavelength is long (taken to mean greater than 3Ax) or short (i.e. less than 3Ax). These wave 
numbers are referred to as oA, oB, uc, oD 

Referring to Figure 5(a), the first incident wave has (complex) amplitude A and wave number oA. 
This wave refers specifically to the long wave (i.e. wavelength greater than  AX,) in region 1. In 
region 2 it gives rise to the 'physical' transmitted wave with amplitude A t ,  and low wave number 
oc, as well as the complementary transmitted wave with amplitude At ,  and high wave number oD 
(i.e. wavelength less than  AX,). Equations (39) and (40) of Part I (or equations (6) and (7) below) 
define z1 and z,. 

The second incident wave has (complex) amplitude B and wave number oB. This wave refers 
specifically to the short wave (i.e. wavelength less than  AX,) in region 1 .  In region 2 it gives rise to 
the 'physical' transmitted wave with amplitude Bt; and high wave number oD, as well as the 
complementary transmitted wave with amplitude Bt; and low wave number oc. 

The addition of the two wave systems (Figure 5(b)) due to the two incident waves ( A  and B) gives 
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rise to two transmitted waves C and D. By superposition, 

C=Az,+Bz;, 

D = Br; + A z z ,  

where from equations (39) and (40) in Part I we have 

where 

Similarly, 

71 = I [  1 1 +"*I; 
..=;[1+], 

E C  

(using equations (8)-(1 I), (26), (27)), 

7; =;[ 1 -$] = 1 - 7 r  - - (using equations (8H1 l), (26), (27)). 

(7) 

For convenience, the various waves will simply be referred to by their amplitudes as wave A ,  B, 
C or D. 

As for the 'hot-start' analysis, a will be used to denote the (complex) amplitude of the interfacial 
node in this combined wave system. 

In region 1, where x <O, the combined instantaneous surface elevation and velocity are given by 

, (14) 

(15) 

> (16) 

(17) 

q(0, t )  = aeiwf, (18) 

q(x, t )  = AeiW -  AX) + BeW - a m )  

u(x, t )  = J(g/h) (Aei(or -#AX) + Bei(wf -OB*) 1; 
in region 2, where x >O, the surface elevation and velocity are 

rl(x, t )  = Cei("f - acx) + DeiW - 

u(x, L )  = J(s/h) (Cei(wt - acx) + Dei(mf - ~ D X )  ); 

and at the interfacial node, where x=O, the surface elevation and velocity are 

U(O, t )  = J(g/h)cleiaf. (19) 
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It is noteworthy that waves A, B, C and D all travel in the downstream direction, i.e. in the 
positive x-direction. That is, waves A, B, C and D all have positive phase velocity (but only waves 
A and C have a positive group velocity). 

Also, since oA and uB are complementary wave numbers as well as oc and q,, we know from 
equation (3) that 

(20) tan (y,/2) tan (yB/2) = tan (y,/2) tan (yD/2) = 3. 

The five unknowns are A, B, C, D and a, but since the solution being sought to explain the results 
of the 'cold-start' experiments has only three waves present, one of the amplitudes (i.e. D) will later 
be set to zero. The amplitudes B and C will be expressed in terms of the incident wave amplitude A. 
It is clear, however, that by setting one of A, B or C to zero instead of D, there are three more 
possible wave configurations consisting of three waves in each configuration. In the meantime, all 
four amplitudes will be retained to keep the analysis general. In each case only three equations are 
required in order to solve for a and two amplitudes out of A, B, C and D. 

3.1. Continuity qf surface elevation at x = 0 

Two equations can be obtained from the fact that the assumed solutions for the two regions as 
well as the interfacial node must be equal at the origin for all times in order to maintain continuity 
of the water surface (and hence also of pressure) between the two regions; i.e. 

YIX 6 0 = YIX = 0 = rlx 2 0 

or, at x=O, 
Aei(ot - UAX) + Bei(uf - oex) - - aeiwf - - Cei(ot - acx) + Dei(ut - UDX) 

Therefore 

A +B=a= C + D ,  (21) 
where C and D are related to A and B via equations (4) and (5). 

3.2. Momentum equation centred about x=O 

discrete analogue of the momentum (or continuity) equation about the origin: 
The third equation can be obtained by applying the Crank-Nicolson linear finite element 

"[ (un+L;un)-, +2(un+;;un)o] +- A;2 [ 2 ~+;;u~)o+(u"+;Iu")l j 

EL[ / i ( A e i I u ( n +  I ) A t + Y A l  +Bei[D(n+ l ) A t + Y e l  

6 

(22) 
9 9 +4(rl' - r l -  l )n+ +$41-YI- 1)n =o. 

Substitution of the appropriate assumed solutions (equations (14H19)) into the above gives 

6At 1 (Aei1mAt + YAI + Bei[onAt + Ye1 
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From the dispersion relation for the two regions, it is easily shown that 

- = I (  A - 1  . l.5$,sinyA ) = i (  
A + l  2+cosyA 2 + cos y B  2 + cos yc 2 + cos y D  

and substitution of equation (21) (to eliminate CI) and equation (24) into (23) leads to the simplified 
form of equation (23): 

Using equation (20), it is easily shown that 
-(EAA+E,B)+EcC+ EDD=O. (25) 

EA= -EB, (26) 

Ec= -ED. (27) 

3.3. Summary of equations to be solved 

The two equations to be solved for two unknowns out of the four amplitudes A, B, C and D are 

A + B- C - D =O, (21) 

-(EAA+ EBB)+ EcC+ E,D=O, (25) 

where EA, EB, Ec and ED are defined by equations (8Hl l ) .  

3.4. Solutions of the equations 

The solutions being sought to equations (21) and (25) contain three waves only. It is seen 
therefore that setting each of A, B, C and D to zero in turn gives four possible different solutions or 
wave configurations, which are represented in Figure 6 as cases (iii), (i), (iv) and (ii) respectively. 

The first solution to be discussed has B=O and, as a check, should coincide with the ‘hot-start’ 
solution of equations (41H44) of Part I. 

Case ( i ) :  B= 0. As this case corresponds to all but two of the ‘hot-start’ experiments carried out 
in Part I (i.e. Figures 12, 13, 15 and 16), it is referred to as the ‘hot-start’. The unknown transmitted 
wave amplitudes C and D will be found relative to the incident wave amplitude A. Solving 
equations (21) and (25) simultaneously gives 
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CASE l i  ) 

CASE l i i l  

CASE liiil 

CASE i iv l  

Figure 6. Schematics of the four wave configurations-directions of energy flux are indicated by an arrow (a) 

which are identical to equations (6) and (7) for tl and z2 respectively. Numerical experiments 
confirming the validity of the analysis for this case have already been discussed in Part I. The 
relevant figures (for equations (28) and (29)) are Figures 5-9 in Part I.' 

Case ( i i ) ;  D=O. This is the case which will be referred to as- the 'cold-start', since it explains 
what happens in the model with the particular 'cold-start' described in Section 2. The unknown 
amplitudes B and C will be found relative to the incident wave amplitude A .  The solution of 
equations (21) and (25) yields 

B EA-EC -72  
-~ - (using equation (5)) ,  

A - E , + E ,  z1 

z 2EA - 1 -A (using equations (4) and (5)) .  
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Case ( i i i ) :  A = 0. This case has a high-wave-number component present in each region as well 
as the low-wave-number wave in region 2. The wave amplitudes B and C will be given in terms of 
D since only this wave transports energy towards the interface. The solutions will be given in terms 
of yA (or EA) and yc (or E,) even though the wave A is not present, as well as in terms of yB (or EB) 
and yc (or E,). The solution of equations (21) and (25) gives 

- Ec+ EB -z2 (using equations (4) and (9, C - EC-EA 
D Ec+EA EC-EB 71 

B 2E, - 2E, 1 
- (using equation (5)). D-E,+E, E,-E, z1 (33) 

(Alternatively from equations (4) and (5), D/B = z1 and C/B = z2.) 
This case was partly verified by experiment in Part I with just one test using a mesh expansion 

(Figure 11) and another test using a mesh contraction (Figure 14). Four more tests are contained in 
the present paper. 

Case (iu): C = 0. This case also has a high-wave-number component present in each region. In 
addition there is a low-wave-number component in region 1. The amplitudes of the high-wave- 
number waves B and D will be determined as a function of the incident amplitude A. The solution 
of equations (21) and (25) gives 

B EA+Ec -EA-ED- 
A EA-EC EA+ED 72 

2EA 2EA 

- (using equation (5)), 

z1 

A-EA-E, EA+ED z2 
= (using equations (4) and (5)). - 

(34) 

(35) 

3.5. Discussion of the four solutions 

It has been demonstrated in the analysis that based upon group uelocity (or long and short 
waves) there are four possible solutions or wave configurations, each containing three waves. 
From the viewpoint of phase uelocity (in which there are only two discernible wave configurations) 
all the waves present in all four cases are travelling in the same +x-direction (see Figure 6). In 
cases (i) and (iii) an incident wave in region 1 give:; rise to two transmitted waves in region 2. 
In cases (ii) and (iv) there are two incident waves in region 1 but only one transmitted wave in 
region 2. From the viewpoint of energy uelocity, however, each case has waves in which the energy 
flux is in both directions. Those energy velocities in the - x-direction are associated with the high- 
wave-number components, i.e. waves B and D. 

In the ‘hot-start’ solution or case (i), the incident wave A transports energy towards the interface 
in region 1. In region 2 the long-wavelength wave C carries energy away from the interface, but at 
the same time the short-wavelength wave D transports energy towards the interface. It is clear that 
in order to sustain this configuration of waves indefinitely, two energy sources would be 
required-one at the upstream end of region 1 and the other at the downstream end of region 2. 

In the ‘cold-start’ solution or case (ii), the long-wavelength incident wave A carries energy 
towards the interface. At the interface this energy is redistributed between the high-wave-number 
wave B in region 1 and the low-wave-number wave C in region 2. Thus it is seen that only one 
energy source is required and this is at the upstream end of region 1. 

Case (iii) contains a high-wave-number component (i.e. wave B) in region 1, which transports 
energy upstream away from the interface. In region 2 the energy flux due to the waves with 



824 B. CATHERS, S. BATES, R. PENOYRE A N D  B. A. O C O N N O R  

amplitudes C and D is away from and towards the interface respectively. This case is similarto case 
(ii) in that only a single energy source is required, this time at the downstream end of region 2. 
Although no experiments have been carried out, it seems likely that if the velocities and surface 
elevations were set to zero in region 1 (i.e. a ‘cold-start’) and if a short-wavelength wave with 
dimensionless wave number y D  were present in region 2, a numerical model would probably 
generate wave B in region 1 and wave C in region 2 if the model was run for a sufficiently long time. 
This case provides an interesting example of a high-wave-number component giving rise to a low- 
wave-number component-a process which is also a characteristic of negative diffusion! 

Case (iv) contains waves A and B in region 1 and only wave D in region 2. Like case (i), this 
particular configuration of waves requires two energy sources. Energy is transported towards the 
interface by waves A and D and away from the interface by wave B. 

It is an interesting point as to why the analysis of Part I singled out cases (i) and (iii) as valid 
solutions in preference to cases (ii) and (iv). The reason lies in the form of the assumed solution, 
which only allowed for one incident wave rather than two waves (incident, that is, in terms of 
phase rather than energy flux). Thus cases (ii) and (iv) were automatically excluded. 

4. NUMERICAL EXPERIMENTS FOR THE GENERALIZED ANALYSIS 

Numerical experiments for case (i) with B=O were described in Part I .  Experiments to test the 
validity of cases (ii), (iii) and (iv) were needed. Additionally, for case (ii) where D =0, the solutions 
from the numerical model with the initial conditions determined by the analysis (equations 
(14Hl9), (30) and (31)) will be compared with those obtained with ‘cold-start’ initial conditions in 
which only wave A was present. In region 2 the initial velocities and surface elevations were set to 
zero, The model was then run for a period of time until the transients were less significant. 

The analyses for cases (iii) with A = O  and (iv) with C=O were also tested with some (‘hot-start’) 
numerical experiments. For case (iii) the initial conditions were defined by equations (14H19), (32) 
and (33). For case (iv) the initial conditions were specified by equations (14)<19.), (34) and (35). 

4.1. Data used in the numerical experiments 

The data for the different wave configurations of cases (ii), (iii) and (iv) are given in Tables 11, I11 
and IV respectively. In all three tables, H = A x , / A x ,  is the mesh size ratio and N ,  is the 
dimensionless wavelength. 

4.2. Results and conclusions of the numerical experiments for  the generalized analysis 

The results of the (‘hot-start’) numerical experiments for cases (ii), (iii) and (iv) are contained in 
Figures l(bk4(b), 7-10 and 11-14 respectively. The difference between the values from the finite 
element model and the values predicted from the analysis have been plotted as a small triangle at 
each node. In all cases and for all times displayed, the results showed that there was no difference 
between the two sets of values. This verifies the validity of the solutions of all four cases contained 
in equations (28H35). 

The results for case (ii) will now be considered further. Figures l(a)-4(a) contain the results of the 
(‘cold-start’) numerical experiments in which the initial conditions consisted of only one wave and 
this was the incident wave in region 1. In region 2 the surface elevations and velocities were 
initially set to zero. The tests were run for a sufficiently long time for a pseudo-steady state 
condition to be reached just downstream of the interface. Figures l (bw(b)  display the results of 
the corresponding (‘hot-start’) numerical experiments discussed in Section 2 in which the initial 



INTERNAL WAVE REFLECTIONS/TRANSMISSIONS. 11 825 

Table 11. Case (ii): D=O 

Mesh expansion, H’=2 

LJAx,  = 4.oooO 
LA/AX = 8.36 17 

N,=4 L,/Ax, =2.1816 
A = 1.0000 
B = 0.2864 
C = 1 -2864 
(Figure lfb)) 

Mesh contraction, HI= 112 

LA/Ax = 4.0000 
L,/Ax, =2.5152 
LJAx,  = 8.361 7 
A = 1WOO 

C =0.7136 
B = - 0.2864 

(Figure 3(b)) 

Lc/Ax2 = 8.0000 
LJAx = 16.0343 

N,=8 L,/Ax, =2.0878 
A = 1.0000 
B = 0.044 1 
C=  143441 
(Figure 2(b)) 

LA/Ax, = 8.oooO 
LB/Ax2 = 2.19 I 4 
L,/Ax2 = 16.0343 
A = 1.0000 

C = 0.9559 
B= -0.0441 

(Figure 4(b)) 

Table 111. Case (iii): A=O 

Mesh expansion, H’=2 Mesh contraction, H =  112 

LJAx,  = 4.0000 LJAx = 4.0000 
LA/Ax, = 8.3617 L,/Ax, =2.1914 
L$Ax, =2.1816 LJAx,  = 16.0343 

N, = 4 LD/Ax, = 2 5  152 LDJAx2 = 2.0878 
B =0.7136 B = 1.2864 
C = - 0.2864 C = 0.2864 
D = 1.0000 D = 1.0000 
(Figure 7) (Figure 9) 

LJAx,  =8.OOOO LA/Ax, = 8.0000 
L,/Ax, = 160343 L,/AX, =2-1914 
L,/Ax I = 2.0878 

N , =  8 LD/Ax2 = 2.1914 LD/Ax2 = 2.0878 
B=0.9559 B= 1.0441 
C = - 0’044 1 C = 0.044 1 
D = 1.0000 D = 1.0000 
(Figure 8) (Figure 10) 

LJAx, = 16.0343 

conditions were defined by equations (14H19), (30) and (31). When these figures are compared 
qualitatively with the corresponding true cold-start experiments (Figures l(aw(a)), it is evident 
that the analysis for case (ii) provides a true description of the waves which are being established as 
time progresses in the ‘cold-start’ experiments. 

The results of the numerical experiments for cases (iii) and (iv) are contained in Figures 7-10 and 
11-14 respectively. Case (iii) is interesting in that, like case (ii), it requires only one source of energy. 
Wave D is the provider of this energy, which is then redistributed between waves B and C at the 
interface. It is only case (iii) which satisfies the requirements that the sole energy source is located 
in region 2 and energy is pumped from region 2 to region 1. In a similar manner, it is only case (ii) 
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Table IV. Case (iv): C=O 

Mesh expansion, H' = 2 Mesh contraction, HI= 112 

LC/Ax2 = 40000 LJAx = 4.0000 
LA/Ax1 =8.3617 L,/Ax, =2.5152 
L,/Ax, =21816 LJAx, =83617 

N,=4 LD/Ax2=2.51S2 LD/Ax, = 2.1 8 16 
A = 1.0000 
B= 3.4914 B= -3.4914 
D = 4.4914 D =  -2.4914 

A = 1~0000 

(Figure 11)  (Figure 13) 

L,/Ax, = 84000 LJAx = 8.0000 
LA/Ax1 = 16.0343 LB/Axl =2.1914 
L,/Ax = 2.0878 LJAx, = 16.0343 

N , = 8  LD/Ax2=2.1914 LD/Ax2 = 2.0878 
A = 1.0000 A = 1 .oooo 
B = 22.6790 B = - 22.6790 
D = 23.6790 D =  -21.6790 
(Figure 12) (Figure 14) 

TIHE= 0 DT 

TIME. 12007  

lES1  CONDITIONS DT= 0. 2 GI , CELERITY. 1 .OO WSI , MEAN OEPTH=l/9.81 IMI  CONSISTENT MASS LINEAR ELEMENTS 

v OENOTES THE RESIOUAL E NUMERICAL SOLUTION FROM MOOEL - NUMERICAL PREOICTION FROM ANALYSIS 
HS REGION I O X =  1 . o  [MI , COURANT NO.=0.20, L/OX= 8.3617. RELATIVE WAVE AMPLITUDE, A= 0.00000E00 

L/DX= 2. 1816, RELATIVE WAVE AMPLITUOE, 8= 0.71358E00 
RELATIVE YAVE AMPLITUDE, C=-0.28642E00 

L/DX= 2.5152, RELATIVE VAVE AMPLITUDE, D= O.lOOObEO1 

HS REGION I OX= 2.0 (MI , COURANT NO.=O. 10,  L/OX= 4.0000. 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 7. Mesh refinement test with hot start for case (iii) with A=O. Waves present are: incident wave B (2.1816AxJ and 
trarsmitted waves C (44)000Ax,) and D (2.5152Ax2) 
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TIME- 0 01 

lEST CONDITIONS I 01, 0.2 (SI , CELERITY; I .OO W S l  , MEAN DEPTH=I/P.BI IMI CONSISTENT MASS LINEAR ELEMENTS 

v DENOTES E S I O U A L  = NUMERICAL SOLUTION FROM MODEL - NUMERICAL PREDICTION FROM ANALYSIS 
HS REGION I OX= I . O  fMl , COURANT N O . = 0 . 2 0 ,  L/OX=16.0343, RELATIVE WAVE AMPLITUDE, A= 0.00000E00 

L/OX= 2.0878, RELATIVE VAVE AMPCITUOE, 8- 0 .9559 iE00  

HS REGION t OX= 2.0 IN1 , COURANT NO.=O. 10, L/OX= 8.0000. RELATIVE VAVE AMPLITUDE, C=-0.44093E-01 

L/OXa 2. 1914. RELATIVE VAVE AMPLITUDE, 0. 0.lOOOOEOl 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE IN MESH S IZE FOR THE SHALLOW WATER EQUAT1O:E 

Figure 8. Mesh refinement test with hot start for case (iii) with A=O. Waves present are: incident wave B (2.0878AxJ and 
transmitted waves C (~~OOOOAX,) and D (2.1914AxJ 

TIME=SOOT 

- - .  , , I ,  * .  . . I  

TEST CONOITIONS I OT= 0.2 (SI , CELERITY. 1-00 fN/SI , MEAN OEPTH=1/9.81 (MI CONSISTENT MASS LINEAR ELEMENTS 

o OENOTES THE RESIDUAL I NUMERICAL SOLUTION FROM MODEL - NUMERICAL PREOlCTlON FROM ANALYSIS 
LHS REGION I OX= 1.0 In1 , COURANT NO.=0 .20 ,  L/OXJ4.0000, RELATIVE VAVE AMPLITUOE, A= 0.00000E00 

L/DX= 2.5152, RELATIVE WAVE AWLITUOE, B= 0.12864EOl 

RELATIVE WAVE AMPLITUDE, C= 0.28642E00 

L/OX- 2. 1816. RELATIVE WAVE AWLITUM. 0- D.lOOOOEOl 

RHS REGION I OX= 0.5 IHI , COURANT NO,=O.40, L/OX= 8.3617, 

I EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE IN MESH S IZE FOR THE SHALLOW WATER EOUATIONS 

Figure 9. Mesh refinement test with hot start for case (iii) with A=O. Waves present are: incident wave B (2.5152AxJ and 
transmitted waves C (8.3617AxJ and D (2.1816Ax2) 



828 B. CATHERS, S. BATES, R. PENOYRE AND B. A. OCONNOR 

TEST CONDITIONS , DT= 0. 2 6 1  , CELERITY; I .OO lM/SI , MEAN OEPTH=I/P.BI (MI CONSISTENT MASS LINEAR ELEMENTS 

v DENOTES THE RESIDUAL = NUMERICAL SOLUTION FROM MODEL - NUMERICAL PREDICTION FROM ANALYSIS 
LHS REGION I OX= 1.0 [MI , COURANT N0.=0.20, L/DX= 8.0000, RELATIVE YAVE AMPLITUDE, A= rJ.OOOOOE00 

L/OX= 2. 1 9 1 4 ,  RELATIVE YAVE AMPLITUDE, B= 0.10441EOI 

RHS REGION I OX= 0.5 IN1 , COURANT ND.=0.40,  L / D X = 1 6 . 0 3 4 3 ,  RELATIVE YAVE AMPLITUDE, C= 0.44093E-01 

L/DX- 2.0878, RELATIVE VAVE AMPLITUOE, 0- 0. lOOOOEOl 

I EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 10. Mesh refinement test with hot start for case (iii) with A =O.  Waves present are: incident wave B (2.1914A.x,) and 
transmitted waves C (16.0343AxJ and D (2.0878AxJ 

TIME- 0 OT 

- -  

TIME= 12001 

EST COMllTlONS I OT= 0. 2 (SI , CELERITY= 1.00 W S l  , MEAN OEPTH=1/9.81 IM) CONSISTENT MASS LINEAR ELEMENTS 

v OENOTES THE RESIDUAL = NUMERICAL SOLUTION FROM MOOEL - NUMERICAL PREDICTION FROM ANALYSIS 
i s  REGION I OX= I , O  IN1 , COURANT NO.= 0.20, L/OX= 8.361 7, RELATIVE YAVE AWLITUOE, A =  0. lOOOOEOl 

L/OX= 2. 1816, RELATIVE VAVE AMPLITUOE, B= 0.34914EOl 

1s REGION 8 DX= 2.0 (MI , COURANT NO.=O. 10, L/OX= 4.0000, RELATIVE WAVE AMPLITUDE, C= 0.00000E00 

L/OX- 2.5152. RELATIVE VAVE AWLITUOE. 0- 0.44914E01 

iXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 1 1. Mesh refinement test with hot start for case (iv) with C =O. Waves present are: incident waves A (8.3617Ax1) and 
B (2.1816AxJ and transmitted wave D (2.5152Ax2) 
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, 
TEST COMlITIONS I OT= 0.2 6 1  , CELERITY. 1.00 lM/Sl , MEAN DEPTH=II9.8I  IMI CONSISTENT MASS LINEAR ELEMENTS 

P OEMTES THE RESIDUAL = NUMERICAL MLUTIDN FROM MODEL - NUMERICAL PREDICTION FROM ANALYSIS 
.HS REGION I OX= 1.0 IN) , COURANT NO.=0.20, L / C X = l 6 . 0 3 4 3 ,  

L/DX= 2.0878, 
IHS REGION s OX= 2.0 In1 , COURANT NO.=O. 10, L/OX= 8.0000, 

RELATIVE WAVE AMPLITUDE, A= 0.1000CE01 
RELATIVE WAVE AMPLITUDE, 8- 0.22679E02 

RELATIVE WAVE AMPLITUDE, C= 0.000COECO 
L/DX- 2. 1914, RELATIVE WAVE AWLITUOE, 0- 0.23679E02 

EXPERIMENTS FOR WAVE REFLECTIONS OUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 12. Mesh refinement test with hot start for case (iv) with C=O. Waves present are: incident waves A (16,0343Ax1) 
and B (2.0878Ax1) and transmitted wave D (2.1914Ax2) 

- 
TIME- 0 OT 

TIM€=50 DT 

I . .  . I L  

, 
TIME. I O O O T  

EST CONDITIONS I DT= 0.2 IS1 , CELERITY. I .OO W S I  , MEAN DEPTH=1/9.81 (MI CONSISTENT MASS L I M A R  ELEMENTS 

v DENOTES THE RESIDUAL = NUMERICAL SOLUTION FROM MODEL - NUHERICAL PREOICTION FROM ANALYSIS 
IS REGION 8 OX= I .o IMl , COURANT N O . = o . 2 0 ,  L/OX= 4.0000, 

L/OX= 2 . 5 1 5 2 ,  
6 REGION I OX= 0.5 ( M I  , COURANT N O . = 0 . 4 0 ,  L/DX= 8.3617, 

RELATIVE WAVE AMPLITUDE, A= 0,tOOOOEOl 
RELATIVE WAVE AWLITUOE, 8=-0.34914EOl 
RELATIVE WAVE AMPLITUDE, C =  0.00000E00 

L/DX- 2. 1816, RELATIVE WAVE AMPLITUDE, 0=-0.24914E01 

IXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOWWATER EQUATIONS 

Figure 13. Mesh refinement test with hot start forcase(iv) with C=O. Waves present are: incident wavesA(4.0000Ax1)and 
B (23152Ax,) and transmitted wave D (2.1816Ax2) 
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TEST COMIITIONS I 01. 0.2 (S) , CELERITY. I .  00 (M/Sl , MEAN DEPTH=I/9.81 IMI CONSISTENT MASS LINEAR ELEMENTS 

P OEMITES THE ESIOUAL = NUMERICAL SOLUTION FROM HOOEL - NUHERICAL PREDICTION FROM ANALYSIS 
LHS REGION 8 OX= 1.0 (Nl , COURANT N O . = o . 2 0 ,  L/OXs 8.0000, RELATIVE WAVE AWLITUOE, A= 0.IOM)OEOI 

L/OX= 2. 1914, RELATIVE VAVE APPLITUM, 8=-0.22679E02 
RHS REGION I OX= 0.5 (Nl , COURANT N 0 . = 0 . 4 0 ,  L / O X = 1 6 . 0 3 4 3 ,  RELATIVE WAVE AWLITUOE, C= 0.00WOE00 

L/DX- 2.0878, RELATIVE VAVE AMPLITUM, 0=-0.21679E02 

1 EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH'SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure 14. Mesh refinement test with hot start for case (iv) with C=O. Waves present are: incident waves A (8QCtOOAx,) and 
B (2.1914AxJ and transmitted wave D (2.O878Ax2) 

which could be activated by a 'cold-start' in which the only energy source is in region 1 and energy 
is being fed towards the interface from region 1. 

Case (iv) contained the largest waves which were generated. Of the waves present, the 
magnitudes varied from unity to 23.7 and it is rather surprising that such examples could be valid. 
Since the system is linear, it is possible that the amplitude of some of the waves generated exceeded 
the fluid depth! Cases (iv) and (i) would require both upstream and downstream energy sources. In 
the context of a simulation of a real estuary using a varying grid size, it is likely that all four cases 
would be present to an extent which would depend upon the waves present and hence the effective 
energy sources present. 

5. CONCLUSIONS 

The generalized reflection analysis provides a better understanding of the processes at work when 
there is a change in mesh size in a one-dimensional Crank-Nicolson linear finite element model. 
The conclusions are: 

1. The method of analysis would be applicable to other numerical schemes which possess a 
dispersion relation which is concave down. Such dispersion relations have two wave 
numbers corresponding to each wave frequency. (The analysis for numerical schemes with a 
monotonic increasing dispersion relation is simpler since there is only one wave number for 
each wave frequency.) 
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The wave numbers in the two regions can be related to each other via the dispersion relation. 
It has been shown that for Crank-Nicolson linear finite elements in the situation of a mesh 
expansion, there is a band of real wave numbers for the incident wave which give rise to 
complex wave numbers in the downstream region. Such ‘evanescent’ waves are damped in 
space and arise because the frequency of oscillation of the interfacial node is too high for the 
numerical scheme to resolve in the downstream region. (Evanescent waves are discussed in 
Part 111.) 
Expressions for the transmission coefficients have been derived (equations (6) and (7)). These 
show that the transmission coefficients depend only upon the wave numbers in both regions 
and the mesh size ratio (which also equals the ratio of the Courant numbers in both regions). 
Thus the transmission coefficients depend on the relative and not the absolute values of the 
Courant numbers. Equations (28)-(35) permit the effects on wave amplitude to be quantified 
due to any change in mesh size for any wavelength and wave configuration. Equations 
(16)-(20) in Part I can be used to quantify the effects of a mesh size change on the wavelengths 
in both regions. 

For example, consider the effects of a mesh expansion with a mesh size ratio of 2 on incident 
waves with wavelengths 2.1Ax1, 4Ax, and  AX,. The resulting wave amplitudes are given in 
Table V for cases (i) and (ii). 

For a mesh contraction with a mesh size ratio of 0.5, the corresponding amplitudes 
resulting from incident waves with wavelengths 2.1Ax1, 4Ax, and 8Ax, are given in Table VI 
for cases (i) and (ii). 

A comparison within each of Tables V and VI as well as between tables reveals the 
extraordinary variety in the behaviour of the resultant wave patterns caused by the change in 
mesh size. 

Table V. Mesh expansion 

Wavelength of incident wave A 

2,1Ax, 4Ax, 8Ax 

Case (i) C / A = T , =  -0,0622 Wave numbers in C / A = z ,  = 1.5473 
B=O D / A  = z2 = 1.0622 region 2 are complex, DIA = T~ = -05473 

indicating a damped- 
Case (ii) (‘cold-start’) B / A =  -r2/T1 = 17.0653 in-space wave B / A =  - z ~ / T I  ~ 0 . 3 5 3 7  
D=O CIA = 1 -z2/z1 = 18.0653 (to be considered CIA= 1 - T ~ / T ,  = 1.3531 

in Part 111) 

Table VI. Mesh contraction 

Wavelength of incident wave A 

2.1Ax1 4Ax 8Ax 

C / A = z ,  =0.0071 C / A = T ,  =0.1114 CIA = z1 = 0.9578 
DIA = z2  = 0.9929 DIA = z2 = 0.2226 DIA = z2 = 0.0422 

Case (i) 
B=O 

Case ( i i )  (‘cold-start’) 
D=O 

B / A =  -t2/tl = - 139.1 1 
CIA = 1 -z2/z1 = - 138.1 1 

BIA = - t 2 / z ,  = -0.2864 
CIA= 1 - T ~ / T ,  =0.7136 

B / A  = -52/z1 = -0.0441 
CIA= 1 - T ~ / T ,  =0.9559 
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4. The energy velocity (or group velocity) is a more fundamental quantity than phase velocity as 
far as wave reflections and transmissions are concerned. On an energyjux basis, four distinct 
wave configurations were identified, i.e. cases (ij(iv)-see Figure 6. Cases (ii) and (iii) 
required one energy source and would therefore be activated by a cold-start in a numerical 
model. Cases (i) and (iv) required both an upstream and downstream energy source. They 
would only be activated once a numerical model had been running for some time when, due 
to reflections from model boundaries, etc., the requirements for two energy sources derived 
from waves travelling in the same direction in the 1D model would be satisfied. 

5. Based upon phase velocity, there are just two discernible wave configurations, viz. case (i) or 
(iii) and case (ii) or (iv). Since there are no internally reflected waves in any of the wave 
configurations, all waves travel in the downstream direction. 

6. As shown in Part I, the energy flux is balanced across the interfacial node for case (i) and 
consequently, by superposition, for the other three cases as well. 
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